MREdictor: a two-step dynamic interaction model that accounts for mRNA accessibility and Pumilio binding accurately predicts microRNA targets

نویسندگان

  • Danny Incarnato
  • Francesco Neri
  • Daniela Diamanti
  • Salvatore Oliviero
چکیده

The prediction of pairing between microRNAs (miRNAs) and the miRNA recognition elements (MREs) on mRNAs is expected to be an important tool for understanding gene regulation. Here, we show that mRNAs that contain Pumilio recognition elements (PRE) in the proximity of predicted miRNA-binding sites are more likely to form stable secondary structures within their 3'-UTR, and we demonstrated using a PUM1 and PUM2 double knockdown that Pumilio proteins are general regulators of miRNA accessibility. On the basis of these findings, we developed a computational method for predicting miRNA targets that accounts for the presence of PRE in the proximity of seed-match sequences within poorly accessible structures. Moreover, we implement the miRNA-MRE duplex pairing as a two-step model, which better fits the available structural data. This algorithm, called MREdictor, allows for the identification of miRNA targets in poorly accessible regions and is not restricted to a perfect seed-match; these features are not present in other computational prediction methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probabilistic Method for Prediction of microRNA-target Interactions

Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interaction of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set up a probabilistic model to explain the binding between a microRNA sequence and the sequence of a putative target. To this en...

متن کامل

Analysis of Microrna-Target Interactions by a Target Structure Based Hybridization Model

MicroRNAs (miRNAs) are small non-coding RNAs that repress protein synthesis by binding to target messenger RNAs (mRNAs) in multicellular eukaryotes. The mechanism by which animal miRNAs specifically recognize their targets is not well understood. We recently developed a model for modeling the interaction between a miRNA and a target as a two-step hybridization reaction: nucleation at an accessi...

متن کامل

Assessing potential miRNA targets based on a Markov model.

At present, studies on microRNA mainly focus on the identification of microRNA genes and their mRNA targets. Although researchers have identified many microRNA genes, relatively few microRNA targets have been identified by experimental methods. Computational programs designed for predicting potential microRNA targets provide numerous targets for experimental validation. We used a Markov model t...

متن کامل

microRNA target identification by RNA pull down with biotinylated microRNA mimics

New exciting experimental approaches to transcriptome-wide identification of microRNA binding sites are revealing surprising details about microRNA interaction with RNA targets. Approximately one out of five microRNA interactions occur without canonical perfect base pairing to the seed sequence. Instead they are often governed by imperfect binding to the center of the microRNA. One primate spec...

متن کامل

Dynamic Response Analysis of the Planar and Tubular Solid Oxide Fuel Cells to the Inlet Air Mass Flow Rate Variation

The purpose of present study is to investigate the dynamic response of two conventional types of solid oxide fuel cells to the inlet air mass flow rate variation. A dynamic compartmental model based on CFD principles is developed for two typical planar and tubular SOFC designs. The model accounts for transport processes (heat and mass transfer), diffusion processes, electrochemical processes, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013